

Impact of early life stress on brain structure and function: biological mechanisms and pathways to resilience

Robert Paul, PhD/ABPP-CN Director, MIMH Professor, UMSL

Presentation outline

MIMH

Review of core research program

Early life stress

Relation to health

Mechanisms

Impact on brain structure

Moderating variables

Treatment response

Pathways to resilience

Missouri Institute of Mental Health

A research unit of UMSL

Approx. 50 Principal Investigators and team members

Major Funding Agencies
National Institutes of Health
Department of Defense
Substance Abuse Mental Health Service Administration
Department of Mental Health

MIMH areas of expertise

MIMH PI support

Peer Review Program

Mock Review Group

- Full peer review
- Mentor review

Goals

- Identify fatal flaws fast
- Improve technical writing
- Identify methodological confounds
- Improve flow and continuity

MIMH PI support

Faculty Mentoring Program

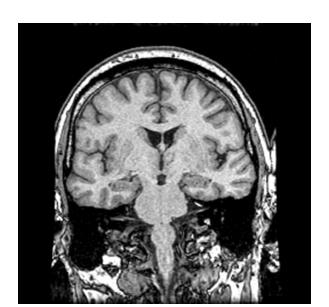
- Provide guidance, ongoing career support, and professional development
- Support understanding of unit culture/environment
- Promote job satisfaction and retention
- Build success

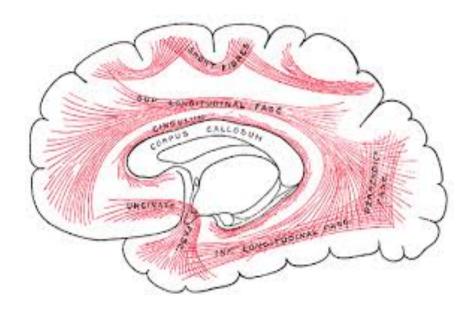
MIMH PI Support

Science Art Collaborative

 Annual program to open minds, unlock creativity, & lead to discovery

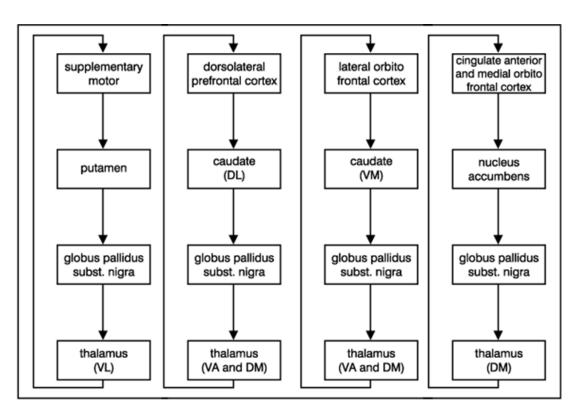
2016 Visiting Artist: Ms. Heidi Claire




Research program

Subcortical brain systems

Subcortical nuclei



White matter

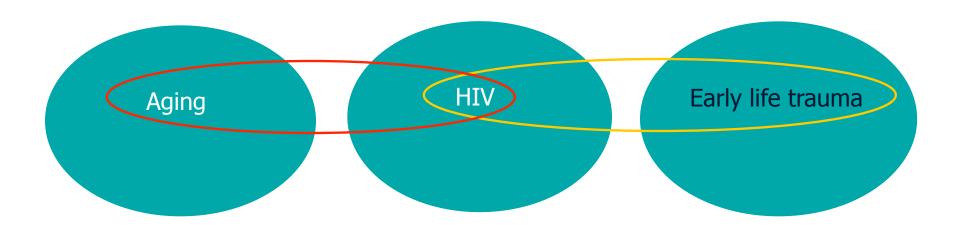
Anatomical circuitry

Nucleus accumbens and apathy. Paul et al 2005

Figure 1 - Frontal-striatal connections.

DL: dorsolateral; DM: dorsomedial; VL: ventrolateral;

VA: ventroanterior; VM: ventromedial.



Research program

- Explain how the brain works.
- Identify mechanisms of brain dysfunction and resiliency.
- Develop (core) mechanism-driven interventions to improve health outcomes.

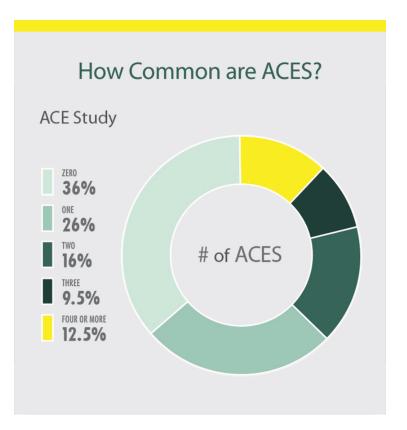
Research program

Targeted involvement of subcortical brain systems (basal ganglia, white matter)

Neuropathogenesis remains undetermined

No current cure

Relationships to health

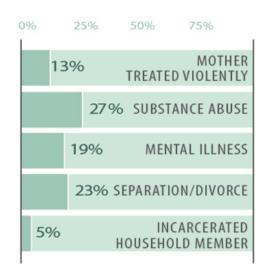

ELS and smoking

 OR of being a current smoker according to number of ACE events:

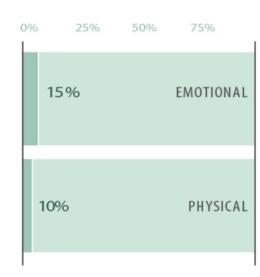
Number of categories	OR (95% CI)
0	1.0 (referent)
1	1.1 (0.9-1.4)
2	1.5 (1.1-1.8)
3	2.0 (1.5-2.6)
4+	2.2 (1.7-2.9)

ELS frequency

64% have one or more



ELS frequency


ABUSE

28% PHYSICAL 21% SEXUAL

HOUSEHOLD CHALLENGES

NEGLECT

CDC, http://www.cdc.gov/violenceprevention/acestudy/

ELS events tend to occur in 'clusters' rather than individual events

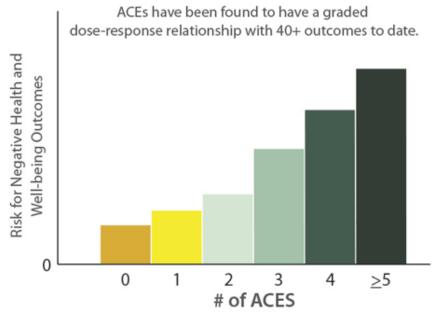
Interpersonal violation	Family breakup	Familial health/death	Personal health trauma	Disaster/War
 Emotional abuse Physical abuse Neglect or poverty Sexual abuse Bullying Domestic violence Sustained family conflict 	 Domestic violence Sustained family conflict Parental divorce or separation Sibling separation 	Death in familyFamily health trauma	 Surgery or hospitalisation Life-threatening illness or injury 	- Warfare - Disasters

ELS and negative health outcomes

- Dose dependent relationships with negative health outcomes:
 - Alcohol use (OR = 7.4; 5.4-10.2)
 - Injection drug use (OR = 10.3; 4.9-21.4)
 - Diabetes, stroke, emphysema, heart disease, hepatitis, etc.

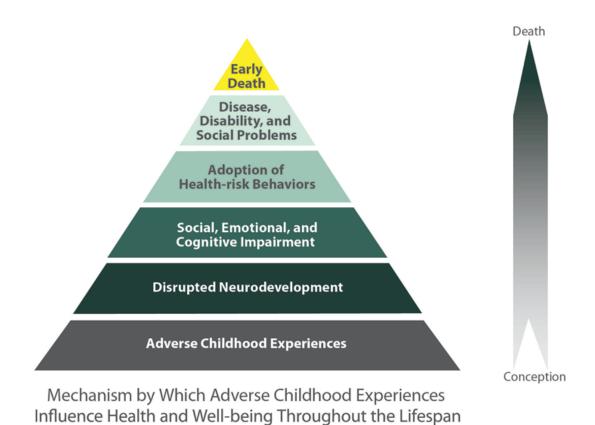
ELS and negative health outcomes

ACES can have lasting effects on....


Health (obesity, diabetes, depression, suicide attempts, STDs, heart disease, cancer, stroke, COPD, broken bones)

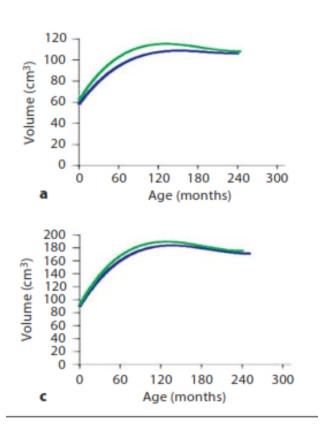
Behaviors (smoking, alcoholism, drug use)

Life Potential (graduation rates, academic achievement, lost time from work)

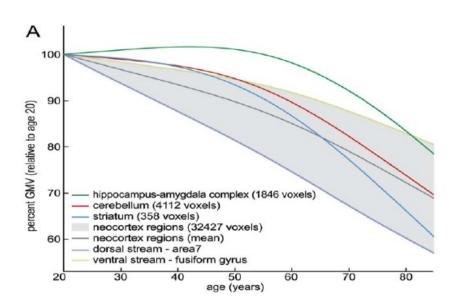


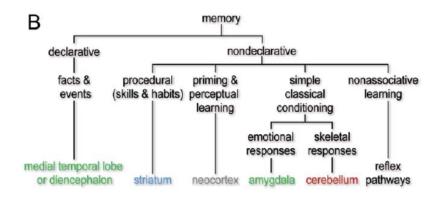
*This pattern holds for the 40+ outcomes, but the exact risk values vary depending on the outcome.

CDC, http://www.cdc.gov/violenceprevention/acestudy/

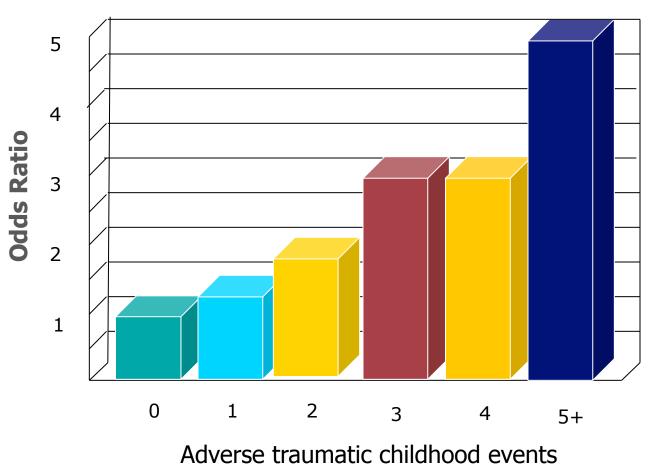


Model of ELS and health




CDC, http://www.cdc.gov/violenceprevention/acestudy/

Early years are critical for brain development


Brain volume: temporal (top), frontal (bottom). Tanaka et al, 2012

Risk of depression increases with # of ELS events

Source: Chapman et al, J. Affective Disorders, 2004

Impact of child/adult trauma on depression & anxiety symptoms

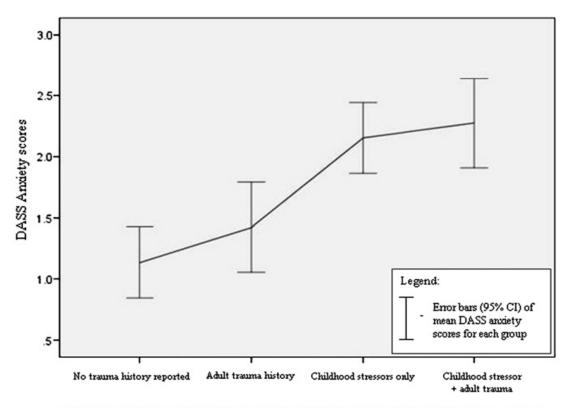
Journal of Psychiatric Research 47 (2013) 23-32

Contents lists available at SciVerse ScienceDirect

Journal of Psychiatric Research

Early life trauma predicts self-reported levels of depressive and anxiety symptoms in nonclinical community adults: Relative contributions of early life stressor types and adult trauma exposure

Denise A. Chu ^{a,b,*}, Leanne M. Williams ^{a,b,1}, Anthony W.F. Harris ^{a,b}, Richard A. Bryant ^{a,c}, Iustine M. Gatt ^{a,b,1}


a Brain Dynamics Centre, Westmead Millennium Institute & Discipline of Psychiatry, University of Sydney Medical School, Westmead, NSW 2145, Australia

^bDiscipline of Psychiatry, Sydney Medical School, University of Sydney, NSW 2006, Australia

^cSchool of Psychology, University of New South Wales, Randwick, NSW 2052, Australia

Childhood exposure has higher risk than adult trauma

Groups according to presence/absence of childhood stressor and/or adult trauma exposure

Fig. 2. Graph of mean DASS anxiety scores in nonclinical community adults according to self-reported early life stressor and adult trauma exposure (n = 1088).

Interpersonal trauma is strongest predictor of depression/anxiety scores

Interpersonal violation	Family breakup	Familial health/death	Personal health trauma	Disaster/War
 Emotional abuse Physical abuse Neglect or poverty Sexual abuse Bullying Domestic violence Sustained family conflict 	 Domestic violence Sustained family conflict Parental divorce or separation Sibling separation 	 Death in family Family health trauma 	 Surgery or hospitalisation Life-threatening illness or injury 	- Warfare - Disasters

Mechanisms of ELS

ELS and the brain - HPA axis

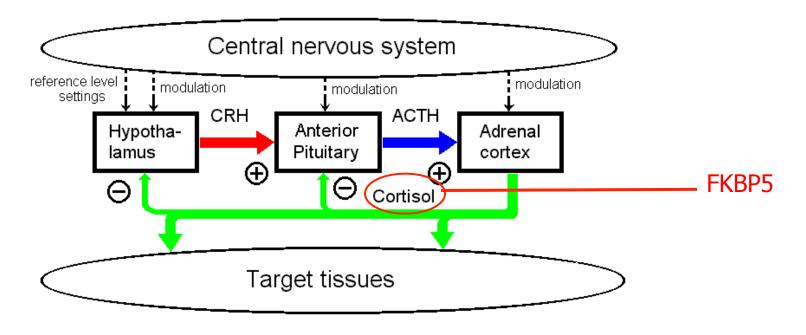


Fig 1. Structure diagram of the HPA axis

ELS and the brain - Immune

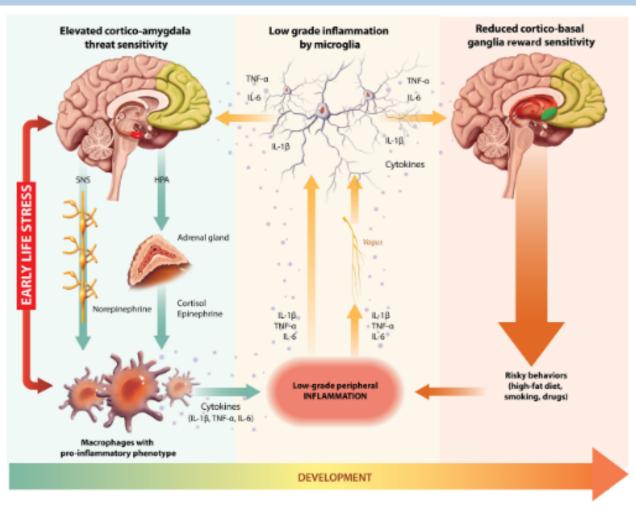


Figure 1. Depiction of neuroimmune network hypothesis. HPA, hypothelamic-pituitary-adrenocortical; IL-1β, interleukin-1β; IL-6, interleukin-6; SNS, sympathetic nervous system; TNF-α, tumor necrosis factor-alpha. Illustration by Chi-Chun Liu and Qingyang Chen.

ELS and brain integrity

ELS and the brain

- MS increases plasma cortisol and ACTH
- MS downregulates glucocorticoid receptor protein

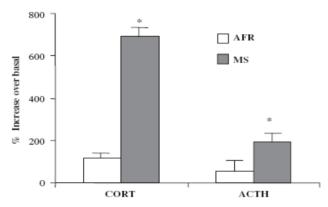


Fig. 3 Effect of maternal separation (MS) on plasma corticosterone and ACTH responses to an acute stressor (15 min swimming). Data are presented as percentage increase over basal values; *p<0.001 vs control (AFR) rats, Student's t-test. Basal levels were 68.45 ± 6.30 and $70.19\pm5.59\,\text{ng/ml}$ (cortico sterone) and 178.05 ± 28.08 and $165.52\pm48.28\,\text{pg/ml}$ (ACTH) for AFR and MS groups, respectively.

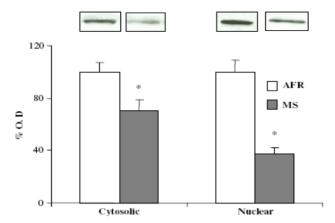
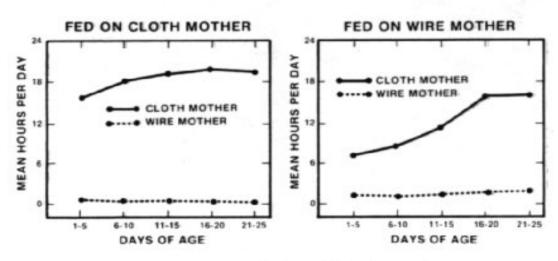


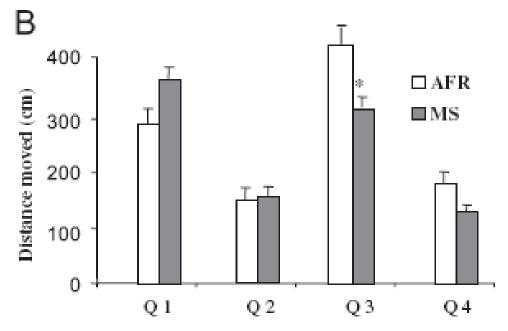
Fig. 4 Distribution of glucocorticoid receptor protein, in nuclear and cytosolic extracts from hippocampus of stressed AFR and MS rats. Data are expressed as percentage of optical density (OD) values of control rats (AFR). MS: maternal separation rats. *p < 0.01 vs AFR rats, Student t-test.

ELS and the brain

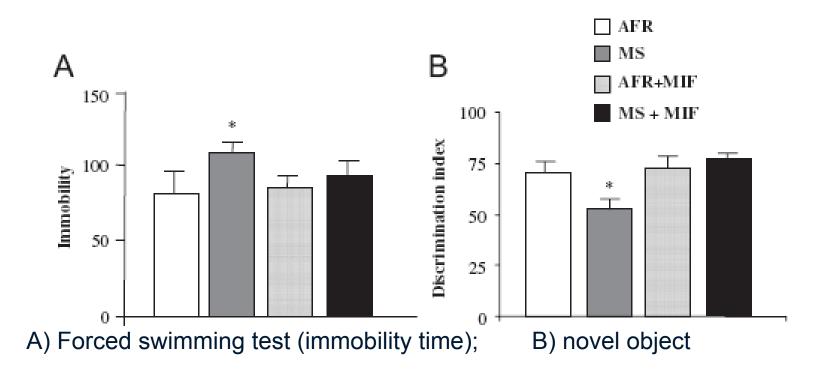
- 10-22% reduction in astrocyte density in hippocampus, prefrontal cortex, cingulate cortex, and basolateral amygdala (Leventopoulos et al., 2007).
- Reduced N-acetylaspartate (NAA) in anterior cingulate of monkeys 10 years after exposure to ELS (Mathew et al., 2003).
- Reduced spine densities in pyramidal cells of anterior cingulate and frontal cortex of rats exposed to prenatal stress (Murmu et al., 2006).
- Dendritric atrophy in CA3 pyramidal cells (prevented by NMDA antagonists Gould et al., 1997).
- Reduced LTP in hippocampus (Yang et al., 2007).

Harlow's studies of maternal attachment




Figure 5. Time spent on cloth and wire mother surrogates.

MS and Morris WMT


Morris WMT

Distance swam in each quadrant – platform used to be in quadrant 3.

Mifeprestone treatment

ELS and clinical populations

- Individuals with PTSD exhibit:
 - Reduced volume of the hippocampus (Bremmer, 1995, Gurvits et al., 1996; DeBellis et al., 1999)
 - Reduced volume of the corpus callosum (DeBellis et al., 1999, Teicher et al., 2004)
 - Reduced volume of anterior cingulate (Kitayama et al., 2006), and reduced NAA in anterior cingulate (De Bellis, 2000)
 - Elevated CRH in CSF (de Kloet et al., 2006)

ELS and clinical populations

Table 1. Prevalence and Co-occurrence of Adverse Childhood Events (ACE)

	% Of		
ACE	Total	ACEs (Total)	%
Divorce	22.2	0	31.8
Severe Family Conflict	20.3	1	22.3
Separated from Family	16.1	2	15.3
Premature Birth	15.6	3	9.2
Major Illness in Family	14.9	4	5.1
Bullied	17.4	5	4.0
Death in Family	11.3	6	2.8
Emotional Abuse	12.3	7	2.2
Domestic Violence	11.8	8 or more	2.0
Hospitalization/Surgery	9.4		
Natural Disaster	7.6		
Major Illness (Self)	7.4		
Physical Abuse	5.2		
Sexual Abuse	4.6		
War	4.1		
Poverty/Neglect	3.7		
Fire Destroyed Home	1.5		
Adoption	1.2		

ACEs-Total excludes premature birth.

~ 50% females

Sexual/emotional abuse > in females

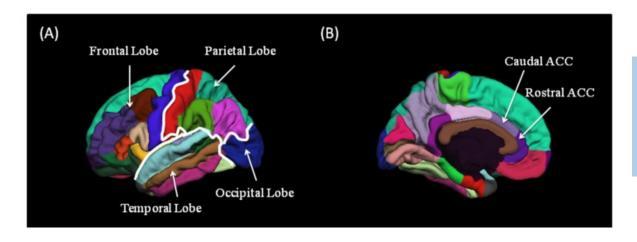
Bullying > in males.

Cohen et al. Biol. Psychiatry, 2006 n=1045 from community sample Chu et al. J Psychiatric Research, 2013 n=1209 from community sample

ELS and gray matter

- 265 healthy controls
 - ELS defined as high (2 or more) vs. none

Table 2. Volume of Brain Structures as a Function of Early Life Stress


Brain Structure	ACE-None	ACE-High
ACC		
Right	3.667 ± .537	3.518 ± .571
Left	$4.744 \pm .702$	4.602 ± .734
Amygdala		
Right	1.27 ± 1.40	1.26 ± 1.43
Left	1.16 ± 1.28	1.15 ± 1.36
Caudate Nucleus		
Right	2.773 ± .309	2.681 ± .310
Left	2.941 ± .348	2.875 ± .351
Hippocampus		
Right	3.166 ± .390	3.079 ± .400
Left	3.380 ± .400	3.279 ± .406

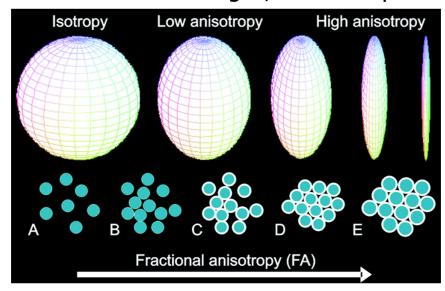
Measurements in mm 3 for each structure bilaterally. Bold indicates between-group differences (p < .05). ACE, adverse childhood event; ACC, anterior cirgulate cortex.

Early Exposure to Traumatic Stressors Impairs Emotional Brain Circuitry

Mayuresh S. Korgaonkar^{1,2*}, Cassandra Antees¹, Leanne M. Williams^{1,2,3}, Justine M. Gatt^{1,2}, Richard A. Bryant⁴, Ronald Cohen⁵, Robert Paul⁶, Ruth O'Hara³, Stuart M. Grieve^{1,7}

ACC and amygdala are reduced in adolescents 13-18 years w/ >2 ELS events

Summary: cortical gray matter is affected.



White matter: diffusion tensor

- Mean Diffusivity (MD)
 - The amount of total diffusion in a given voxel
- Fractional Anisotropy (FA)
 - The non-uniformity of diffusion with direction

FA is highly sensitive to microstructural changes, it is less specific to the

type of change.

White matter: diffusion tensor

Table 2 DTI outcomes among those with either ELS low or ELS high across the three age groups

Age group	ELS high n	ELS low n	ELS high FA	ELS low FA
8–12	6	3	0.19 (.16)	0.38 (0.06)
18–50	62	10	0.44 (.10)	0.46 (0.07)
51–73	21	5	0.30 (.13)	0.40 (0.08)

FA, fractional anisotropy (range is 0-1.0).

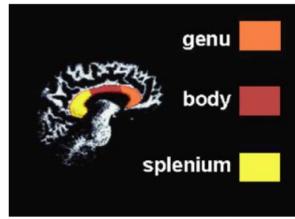
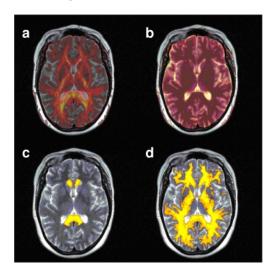
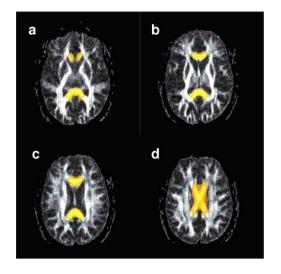




Fig. 1 Demarcated regions of the corpus callosum. For the present study only the region of the genu was included in analyses

n=116 participants with histories of ELS

Age Education

ELS-high: 41.0 (16.5) 14.6 (2.7)

ELS-none: 38.1 (17.2) 13.6 (2.6)

Table I

	ELS total	ELS high	ELS none
Age	38.5 (16.1)	41.0 (16.5)	38.1 (17.2)
Education	13.8 (2.7)	14.6 (2.7)	13.6 (2.6)
Handedness	R (91%), L (9%)	100%	R (93%), L (7%)
Gender	54% female,	60% female,	53% female,
	46% male	40% male	47% male
DASS depression	4.9 (9.6)	3.3 (3.0)	2.2 (3.0)
DASS anxiety	2.6 (3.6)	1.7 (1.8)	1.1 (1.8)
DASS stress	7.0 (6.4)	4.6 (4.2)	3.3 (2.9)

Table 3 FA values and gross morphometry for the whole group and ELS-high vs. ELS-none

Variable	Whole group	ELS-High	ELS-None
Mean FA Value – Whole CC	0.54 (0.09)	0.49 (0.13)	0.54 (0.08)
Mean FA Value – Genu*	0.45 (0.09)	0.39 (0.13)	0.45 (0.07).
Mean FA Value – Body	0.56 (0.11)	0.50 (0.16)	0.57 (0.09)
Mean FA Value – Splenium	0.58 (0.10)	0.55 (0.12)	0.58 (0.10)
Mean volume – Whole CC	18.3 (2.9)	17.8 (3.5)	18.3 (2.7)
Mean Volume – Genu	5.6 (1.0)	5.5 (1.3)	5.5 (0.95)
Mean Volume – Body	4.4 (0.71)	4.3 (0.77)	4.3 (0.71)
Mean Volume – Splenium	8.4 (1.3)	8.0 (1.7)	8.4 (1.2)

^{* =} Significant differences (p < .05); FA = fractional anisotropy

Age of onset

- We next wanted to understand if critical windows of development existed that would influence the effects of ELS on brain integrity.
- "infantile amnesia"

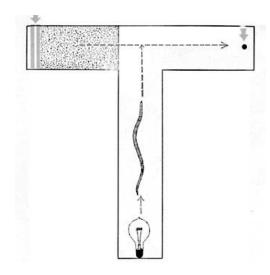


Table 2 Mean volume of brain structures as a function of early life stress

Brain structure	No ELS	Early childhood ELS (Ages 1 month-7 years)	Later childhood ELS (Ages 8–17 years)	P value
ACC	5304.98 ± 691.41	5088.16 ± 642.01	5046.27 ± 594.07	.061
*Right	5139.32 ± 677.85	4941.91 ± 618.97	4894.01 ± 576.51	.018
*Left	5470.64 ± 704.96	5234.41 ± 665.05	5198.53 ± 611.63	.031
Amygdala	1219.12 ± 128.45	1194.16 ± 129.94	1209.53 ±115.87	.237
Right	1277.76 ± 138.46	1243.35 ± 137.79	1267.71 ± 125.45	.181
Left	1160.47 ± 124.80	1135.22 ± 117.61	1151.34 ± 111.82	.354
Caudate nucleus	3256.08 ± 336.47	3134.11 ± 349.40	3169.67 ± 357.69	.079
Right	3289.55 ± 356.77	3148.47 ± 352.34	3214.37 ± 386.48	.077
Left	3222.62 ± 337.46	3093.27 ± 330.11	3124.97 ± 339.38	.097
Hippocampus	3943.20 ± 454.42	3887.05 ± 418.47	3843.47 ± 387.72	.558
Right	3860.04 ± 451.57	3792.72 ± 409.40	3575.45 ± 380.63	.531
Left	4026.36 ± 473.78	3956.82 ± 428.71	3929.50 ± 405.76	.608
Insula	8286.63 ± 1032.23	8025.02 ± 941.17	7890.26 ± 887.92	.053
Right	8212.37 ± 1084.66	7982.27 ± 884.89	7835.26 ± 903.88	.155
*Left	8360.55 ± 1004.84	7980.72 ± 909.42	7945.26 ± 897.19	.018

Mean \pm Standard deviation shown in table, Measurements in mm³ for each structure bilaterally. *Between-group differences (p < .05)

Genetic variables

BDNF met as 'risk' allele in brain but no direct impact on depression symptoms

Brain Derived Neurotrophic Factor (BDNF) BDNF Val66Met polymorphism

BDNF is involved in brain plasticity.

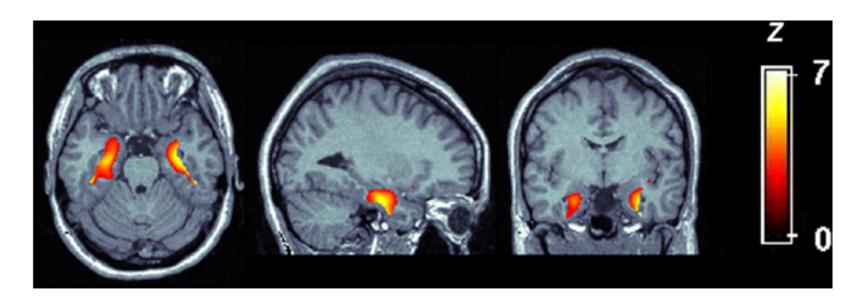
It has a direct effect on plasticity of amygdala and on frontal-hippocampal circuits

The Met allele is present in about 20% of people and is linked to reduced plasticity

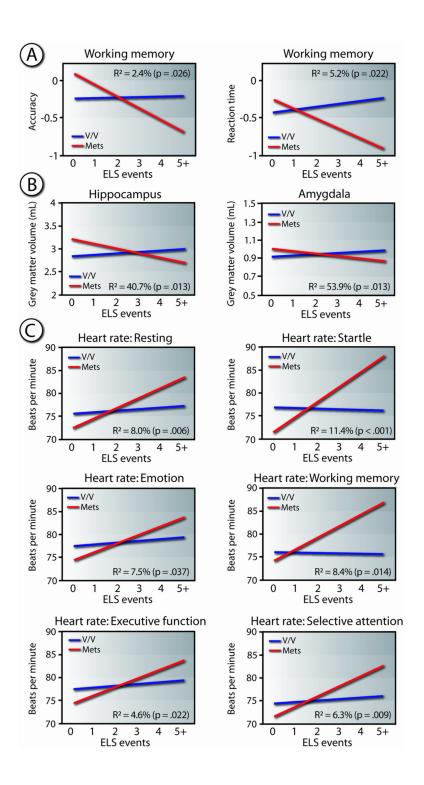
BDNF met as 'risk' allele in brain but no direct impact on depression symptoms

BDNF Val66Met x Early Life Stress

Brain (grey matter volume)

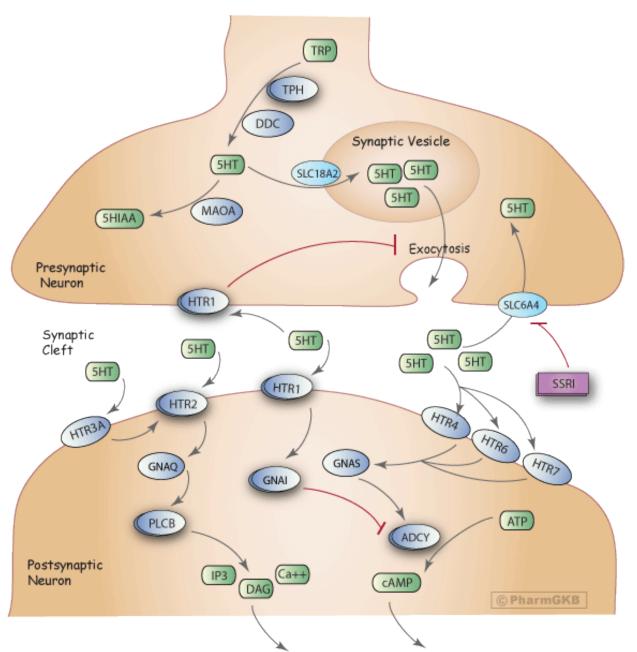

Body arousal (heart rate)

Temperament (emotional stability)


Symptoms of Depression and Anxiety Cognition

BDNF Mets as 'risk' allele in brain but no direct impact on depression symptoms

 BDNF Met allele carriers show reductions in grey matter volume of hippocampus, relative to VV genotypes

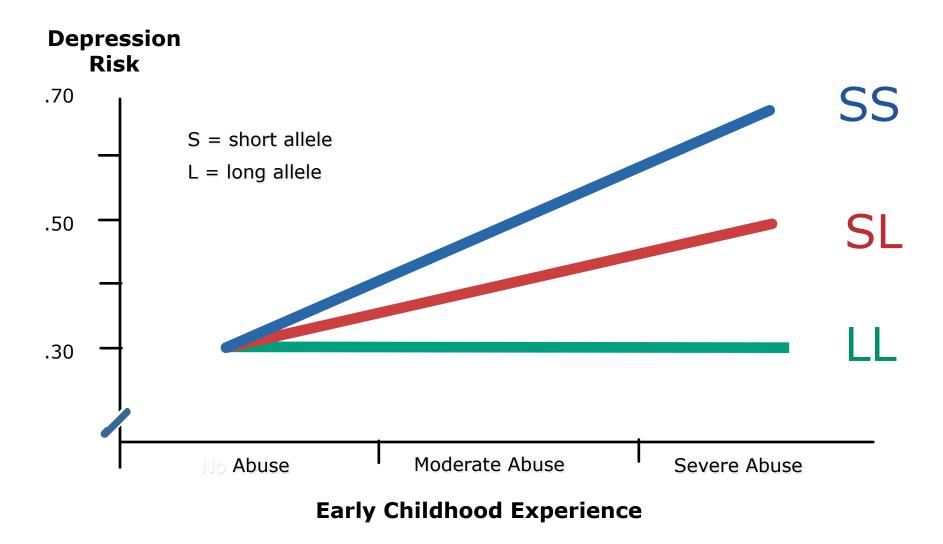


Serotonin transporter gene

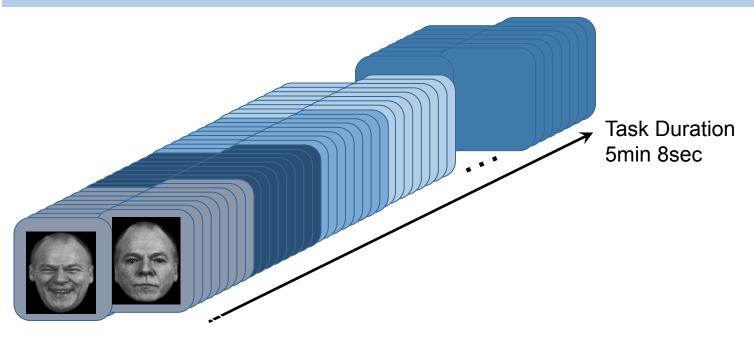
5HT Transporter Gene

People with the Short allele variant of the 5HT Transporter have a higher risk for depression, especially when coupled with stress

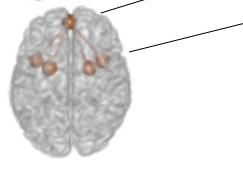
The Short allele is present in about 40% of people

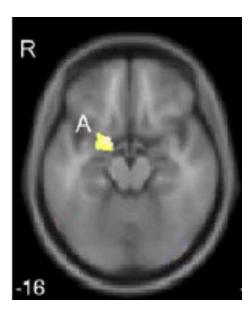


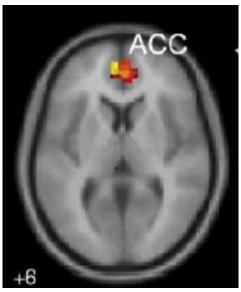
Neurotransmitter Release from Central Serotonergic, Noradrenergic, and Dopaminergic Neurons


https://www.pharmgkb.org/pathway/PA161749006

Short allele and emotion processing


Emotion Mask 16.7 ms 150 ms

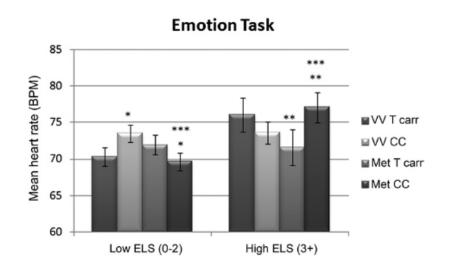

Williams et al., Human Brain Mapping, 2004; Williams et al., Human Brain Mapping, 2006; Williams et al., J Neuroscience, 2006a,b; Williams et al., Neuroimage, 2009, 2010; Korgaonkar et al., Neuropsychopharmacology 2013

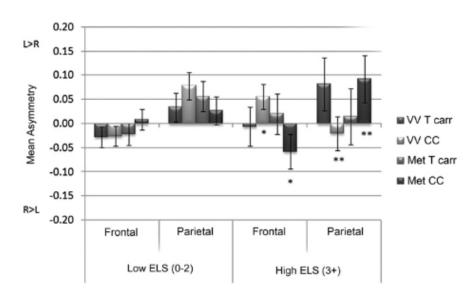


Anterior Cingulate

Negative Affect Amygdala

Amygdala (A) and Anterior Cingulate (ACC) activation is ...

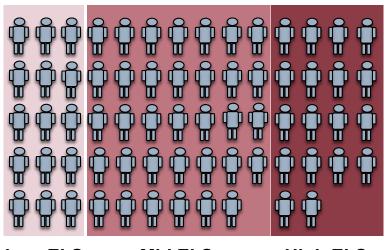

- •greater in people with the 5HT Transporter Short Allele.
- •greatest in Short allele carrriers who also have >2 traumatic events.


This hyper-activation predicts greater symptomatic risk for depression

BDNF + serotonin 3A

- Brain derived neurotropic factor, met66val polymorphism. met/met < val/val
- Serotonin 3A, HTR3ACC vs T

Worst outcomes among Met CC: reduced neuroprotection and decreased serotonin 3A receptor expression


Gatt et al. Biological Psychiatry, 2010

Treatment response

ELS predicts antidepressant treatment response

Low ELS Mic

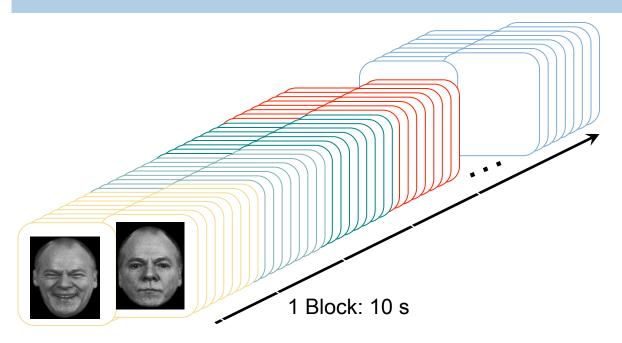
Mid ELS

High ELS

60%

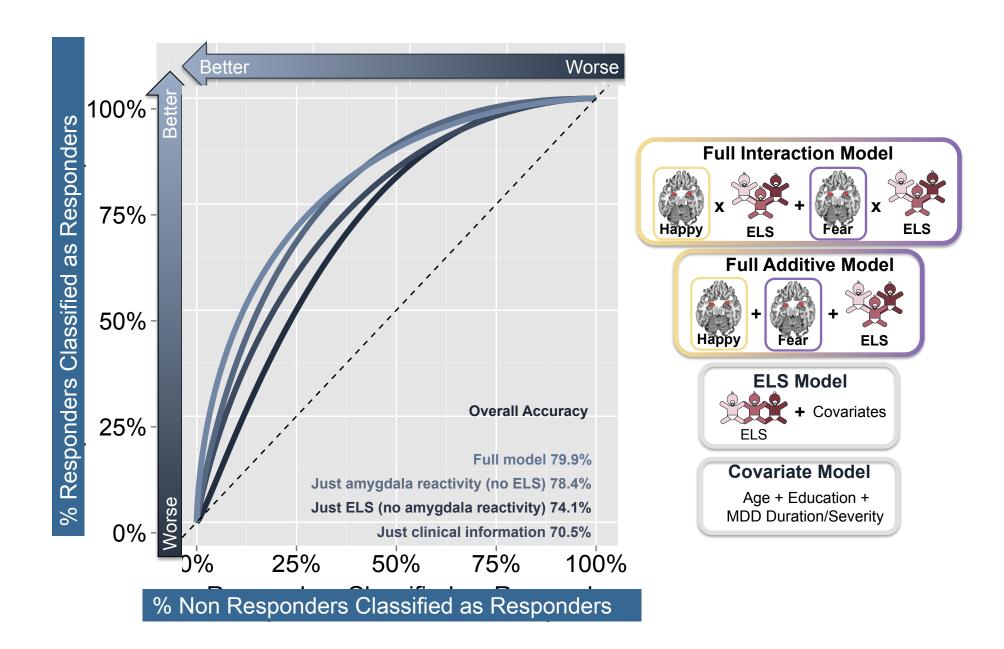
20.6%

16.7%

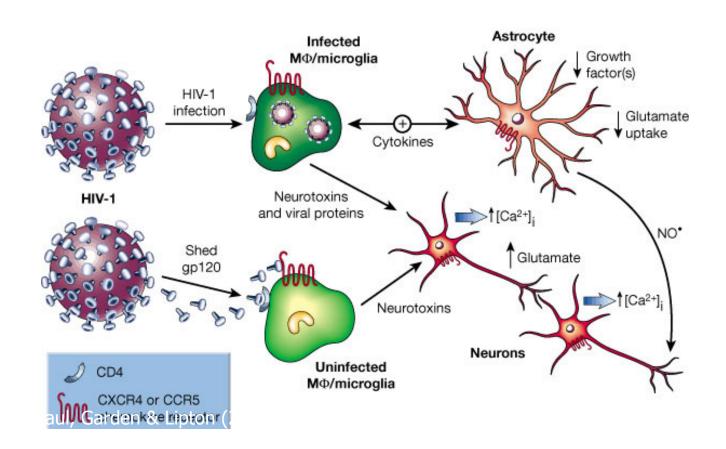


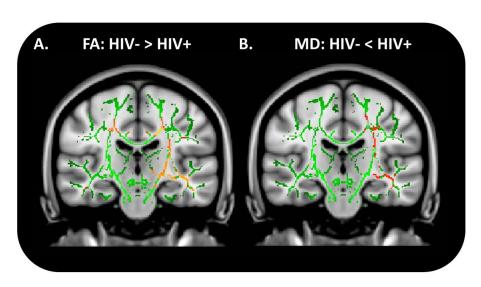
Phase of Study Randomized to **Pre-Treatment QIDS Assessment ELS** Escitalopram HAM-D Amygdala Week 0 Questionnaire Sertraline SOFAS **Function** Venlafaxine-XR Weeks **Telephone Monitoring** 2, 4 and 6 **Primary Outcome: Functional Remission Final Visit** Week 8 >= 61 SOFAS <= 7 HAM-D <= 5 QIDS >= 10 improvement

Naturalistic Follow-up

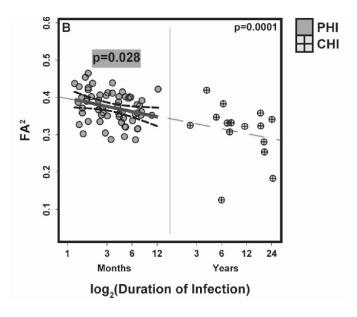

Amygdala test

Emotion Mask 16.7 ms 150 ms


Williams et al., Human Brain Mapping, 2004; Williams et al., Human Brain Mapping, 2006; Williams et al., J Neuroscience, 2006a,b; Williams et al., Neuroimage, 2009, 2010; Korgaonkar et al., Neuropsychopharmacology 2013

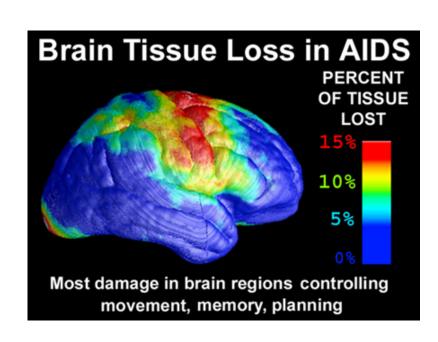


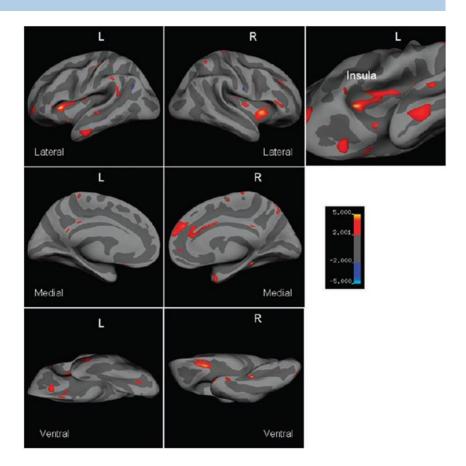
ELS and HIV



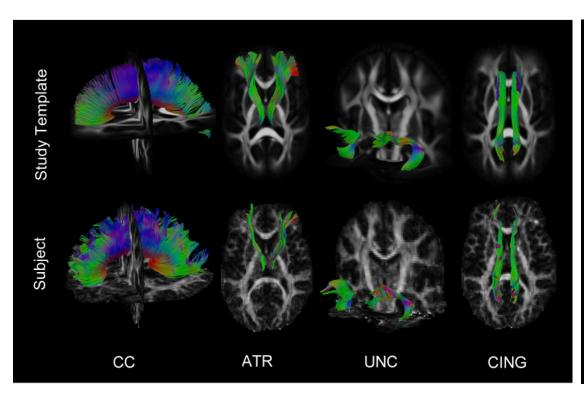
HIV disrupts subcortical white matter integrity

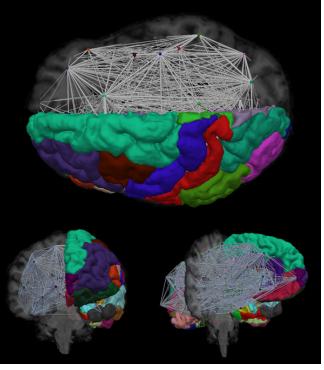
Voxelwise comparisons for FA (A) and MD (B) using Tract-Based Spatial Statistics (TBSS). Red: p=0.05; Orange: p=0.03;


Yellow: p=0.01. Ances lab 2014

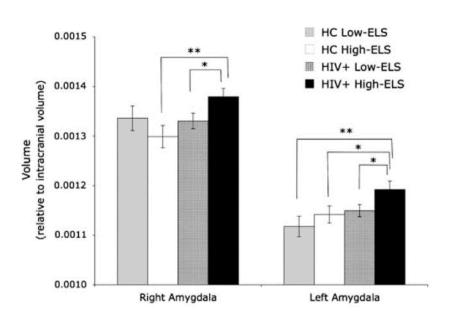

Scanned 4 months post infection. Significant correlations between FA and CSF protein and CSF serum/albumin ratio.

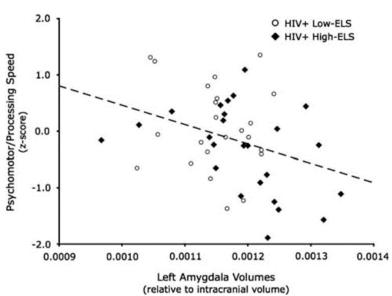
HIV disrupts cortical regions




Thompson et al, 2005

HIV disrupts broad networks





Paul et al, submitted, AIDS

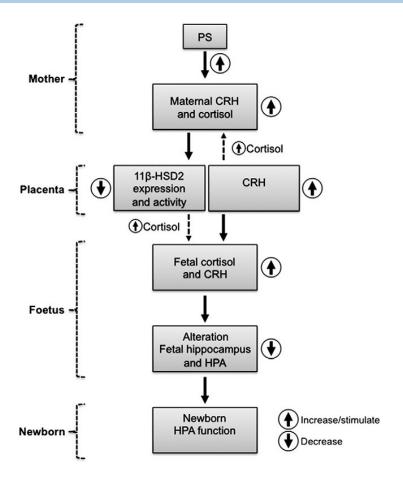
ELS x HIV

Summary

Childhood trauma ...

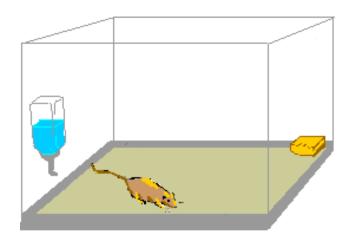
a) is "prevalent", and confers risk for depression-anxiety

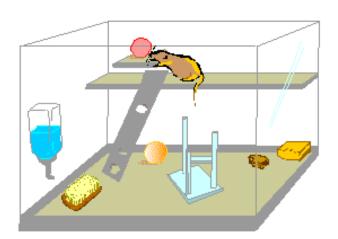
Summary


- b) disrupts the normal maturation of emotional brain circuits during adolescence; especially emotional brain circuits
- c) interacts with serotonin system genotypes to increase the effects on emotional brain circuits, and risk for depressionanxiety
- d) Is more prevalent with overt depression and interacts with emotional brain function to determine antidepressant response

Pathways to resilience

Prenatal stress and the environment

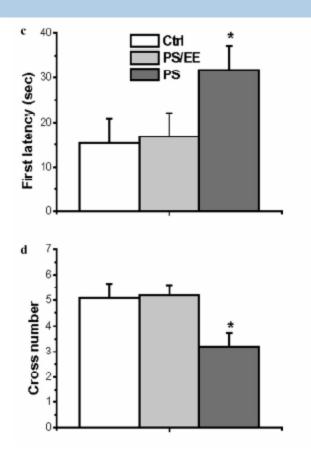

(Yang et al., 2007).



Prenatal stress and the environment

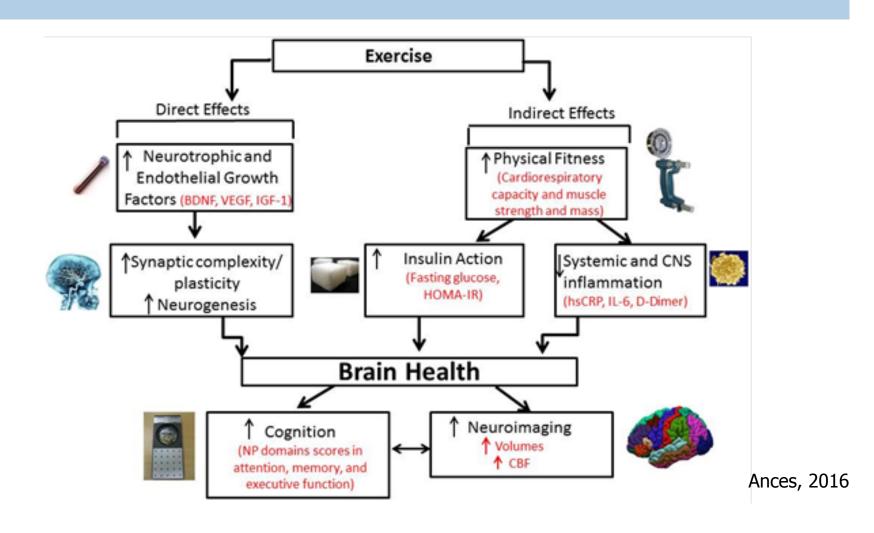
Pregnant rats stressed using foot shock

At PN 22 days, 50% of offspring reared in standard cages, 50% in EE cages. Remained for 30 days.



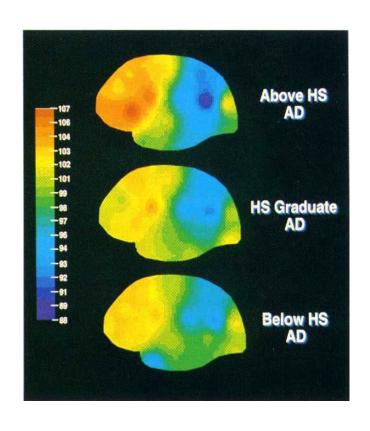
(Yang et al., 2007).

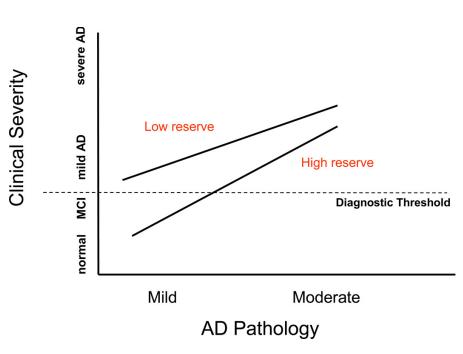
Prenatal stress and the environment


Top) PN stressed offspring showed a longer latency in the first time of crossing the location of the platform compared to controls, but this was reversed by EE.

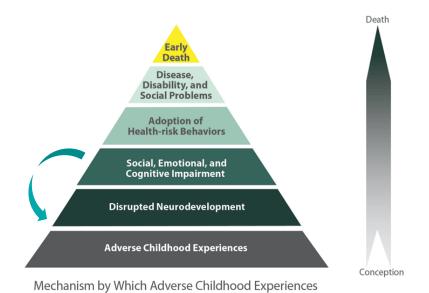
Bottom) PN stressed animals crossed fewer times, but this was reversed by EE.

Opens the door to interventions.




Pathways to resilience- Exercise

Pathways to resilience- Cognitive Reserve


Conclusion

ELS is common, creates a vulnerability that is influenced by genes and the environment.

Postnatal environmental enrichment mitigates prenatal ELS.

Exercise and cognitive/emotion-based interventions have potential to re-configure brain network activity, HPA activity, and immune activation.

Downstream effects on cognition, emotion-regulation and reduced risk behaviors.

Influence Health and Well-being Throughout the Lifespan

Special Thanks

Leanne Williams, PhD

Justine Gatt, PhD University of Sydney

Stanford

Laurie Baker, MA UMSL MIMH

David Laidlaw, PhD Brown

Ryan Cabeen, PhD Brown

Charlie Nemeroff, MD University of Miami